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The organization and localization of lexico-semantic information in the brain has been debated for many
years. Specifically, lesion and imaging studies have attempted to map the brain areas representing living
versus nonliving objects, however, results remain variable. This may be due, in part, to the fact that the
univariate statistical mapping analyses used to detect these brain areas are typically insensitive to subtle, but
widespread, effects. Decoding techniques, on the other hand, allow for a powerful multivariate analysis of
multichannel neural data. In this study, we utilize machine-learning algorithms to first demonstrate that
semantic category, as well as individual words, can be decoded from EEG and MEG recordings of subjects
performing a language task. Mean accuracies of 76% (chance=50%) and 83% (chance=20%) were obtained
for the decoding of living vs. nonliving category or individual words respectively. Furthermore, we utilize this
decoding analysis to demonstrate that the representations of words and semantic category are highly
distributed both spatially and temporally. In particular, bilateral anterior temporal, bilateral inferior frontal,
and left inferior temporal-occipital sensors are most important for discrimination. Successful intersubject and
intermodality decoding shows that semantic representations between stimulus modalities and individuals
are reasonably consistent. These results suggest that both word and category-specific information are present
in extracranially recorded neural activity and that these representations may be more distributed, both
spatially and temporally, than previous studies suggest.
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Introduction

With the advent of functional neuroimaging techniques (e.g., PET
and fMRI), numerous studies have been performed to investigate the
neural basis of semantic representations. Neuroanatomical differ-
ences in the representation of specific semantic categories, especially
living and nonliving objects, have been seen in both imaging and
lesion studies (Caramazza and Mahon, 2003; Caramazza and Shelton,
1998; Chao et al., 1999; Dhond et al., 2007; Hauk et al., 2008; Martin
and Chao, 2001; McCarthy, 1995; Shinkareva et al., 2008; Tranel et al.,
1997; Warrington and McCarthy, 1983; Warrington and Shallice,
1984). Despite extensive work investigating the animate/inanimate
distinction, the reported results are variable from study to study
(Devlin et al., 2002; Moore and Price, 1999). Most studies agree that
the left posterior middle temporal gyrus is activated in response to
tools and man-made objects (Chao et al., 1999; Damasio et al., 1996;
Martin et al., 1996; Moore and Price, 1999; Mummery et al., 1998,
1996; Perani et al., 1999), and that inferior temporal-occipital cortex
is activated for animals and natural stimuli (Chao et al., 1999; Damasio
et al., 1996; Perani et al., 1995, 1999). However, results are conflicting
with regard to the medial temporal surface, left medial frontal cortex,
and parietal cortex; several studies suggest activation for animals in
these areas (Damasio et al., 1996; Martin et al., 1996) while other
studies find activation by man-made and nonliving objects (Chao and
Martin, 2000; Mummery et al., 1998, 1996; Perani et al., 1995).
Furthermore, many of the brain areas showing differential activation
to living and nonliving stimuli are only reported in a single study.

The variability of previously reported results may be due, in part,
to the statistical analysis of high-dimensional neuroimaging data. The
traditional univariate statistical techniques used to analyze these data
require correction for multiple comparisons to control for false
positives, often making them insensitive to subtle, but widespread,
effects within the brain. Therefore, univariate techniques may yield
differing results depending on the specific responses elicited by the
particular experiment performed. We hypothesized that a multivar-
iate decoding analysis, which considers relationships between all
features concurrently, would be able to detect distributed cortical
areas that are differentially activated by living and nonliving objects.

In these previous studies, due to the constraints of the imaging
modality, the temporal representation of these semantic categories
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could not be investigated. Furthermore, fMRI and PET do not directly
measure neural activity, but rather a metabolic correlate. Utilizing
electroencephalography (EEG) and magnetoencephalography (MEG)
allows for the study of both the spatial and temporal dynamics
involved in the language processing. In this study, we recorded
simultaneous EEG and MEG of healthy participants performing a
language task to explore the differences in the neural representation
of living and nonliving objects as well as individual words.

For successful decoding of multichannel EEG and MEG data, a
classifier which is robust to high-dimensional data must be utilized. In
this study, support vector machines (SVMs) were chosen to decode
semantic category and individual word information from neural
representations. SVMs are a family of nonlinear machine-learning
algorithms that are commonly used to classify high-dimensional data
sets (Vapnik, 1995). In combination with the multichannel electro/
magneto-physiological recordings performed in this study, SVMs
allow for a multivariate examination of the spatiotemporal dynamics
of the processing of words and concepts. In this report, we use
subject-specific decoders to study individual semantic representa-
tions, and subsequently examine the consistency between subjects
and modalities using generalized SVM classifiers.

The successful decoding of semantic information from high-
dimensional neural recordings not only allows for the study of
language processing, but also has potential applications in the future
development of language-based neuroprostheses. In this study, we
further extend the SVM analysis by showing that a scalable
“hierarchical tree” decoding framework, that sequentially decodes
word properties to narrow the search space, improves on the single
classifier decoding results, and may allow for the decoding of larger
libraries of words and concepts.

Materials and methods

Participants and data collection

Nine right-handed, healthy male volunteers were recorded using
simultaneous scalp EEG and MEG while performing auditory and
visual versions of a language task. The two tasks were performed in
two separate sessions, separated by an average of 4 months.
Participants were native-English speakers between the ages of 22–
30. This study was approved by the local institutional review board,
and signed statements of consent were obtained from all subjects.

MEG was recorded using a 306-channel Elekta Neuromag Vector-
view system (Stockholm, Sweden). Signals were digitized at 600 Hz
and filtered from 0.1 to 200 Hz. Data from magnetometers and
gradiometers were recorded, however only gradiometers were
utilized in this study due to the lower noise in these sensors.
Simultaneous EEG recordings were obtained from a 64-channel EEG
cap at a sampling rate of 600 Hz with the same filter settings as the
MEG recordings. EEG was recorded using a mastoid electrode
reference but were converted to a bipolar montage to reduce noise.

Language task

A visual (SV) and an auditory version (SA) of a language task were
performed by each participant. A single trial involved presentation of
a written word for 300 ms (in the SV task), or an auditory word
500 ms in length (in the SA task), followed by a fixation point. A
shorter visual stimulus window was chosen in order to align the
potentials related to lexico-semantic processing. Subjects were
instructed to press a button if the presented word represented an
object larger than 1 foot in any dimension (target trials; e.g., tiger,
sofa), while refraining from responding to objects smaller than a foot
(nontarget trials; e.g., cricket, lipstick). Exactly half of the trials
involved words representing objects larger than 1 foot, requiring a
motor response (target trials). This required subjects to access the
semantic representations of these particular words and potentially
retrieve visuospatial or propositional knowledge of the associated
object. Words were equally divided between living objects (animals
and animal parts) and nonliving objects (man-made items). Half
of the trials presented a novel word which was only shown only once
during the experiment while the other half of the trials presented
1 of 10 repeated words (each shown multiple times during the
experiment).

Novel words representing living and nonliving objects were
balanced in terms of mean number of syllables (SA: living=1.52,
nonliving=1.36, SV: living=2.18, nonliving=2.09), letters (SA:
living=5.22, nonliving=5.21, SV: living=6.49, nonliving=6.8),
and lexical frequency (SA: living=15.5 per million, nonliv-
ing=17.34, SV: living=12.52, nonliving=12.45) (Francis and
Kucera, 1982). These word properties were not statistically different
between living and nonliving object categories (Wilcoxon sign-rank,
pN0.05). Auditory words had slightly fewer letters than visually
presented words because they were required to fit within a 500 ms
stimulus window. Repeated words were chosen to be representative
of the novel words with respect to frequency and length. Visual
stimuli were presented as white text on a black background while
auditory stimuli were normalized in peak volume and length. The SV
and SA tasks contained unique sets of words with no overlap between
the two experiments. The visual version of the task included 390 trials
while the auditory version included 780 trials. Analysis of modality-
specific word processing in these tasks was previously performed by
Marinkovic et al. (2003).

Preprocessing

Signals from each channel of the MEG and EEG recordings were
initially bandpass filtered from 1 to 30 Hz. Independent component
analysis was performed on MEG and EEG signals, and EOG and EKG
components were manually removed. For each trial, the continuous
recordings were epoched from 1 s before to 2 s after stimulus onset.
Trials containing large artifacts were rejected using a predefined
amplitude threshold (300 μV for EEG, 5pT/cm for MEG). Thresholds
were intentionally set high to retain as much of the dataset as possible
to reduce over-fitting the classifiers. After alignment to stimulus
onset, waveforms from all channels were baseline corrected using a
500 ms prestimulus period. These preprocessing steps were per-
formed within MATLAB, using the EEGLAB 6.03b (Delorme and
Makeig, 2004) and FieldTrip toolboxes (ver. 20080611, http://
fieldtrip.fcdonders.nl/).

Decoding analysis

Two main components are necessary for the decoding of neural
information: a feature extractor and a classifier. The goal of feature
extraction is to reduce the full neural signal to a smaller number of
components, or “features”, which are relevant for the subsequent
classification task. In this study, the average amplitude in six 50-ms time
windows were sampled from every channel and concatenated into a
large feature vector for each trial (Fig. 1). Thus, a single feature vector
represents the amplitude-based spatiotemporal properties of a single
trial. The six time points selected for decoding living versus nonliving
objects were 200, 300, 400, 500, 600, and 700 ms poststimulus, and the
times selected for decoding individual words were 250, 300, 350, 400,
450, and 500 ms. Previous literature suggests that the N400 component
of event relatedpotentials (ERPs) is associatedwithsemantic processing
and integration,which informed our choice of these time ranges (Bentin
et al., 1993;Hagoort et al., 2004; Kutas andHillyard, 1984;Marinkovic et
al., 2003). These time ranges also minimize early auditory or visual
effectswhen examining individual repeatedwords and account for later
activity when examining novel words (Marinkovic et al., 2003).
Increasing the number of time points beyond six led to negligible
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Fig. 1. Decoding framework utilizing amplitude-based feature extraction and SVMs. The amplitude at six poststimulus time points are selected from each channel and concatenated
into an initial feature vector. The feature vectors from all channels are concatenated into a final feature vector. A single feature vector represents the spatio-temporal dynamics of a
single trial. A nonlinear SVM is trained on these feature vectors to discriminate between the two semantic classes (living vs. nonliving objects) or between individual words. This
results in a decision boundary by which new trials can be classified. In the multiclass case, multiple decision boundaries are generated to separate individual classes from each other.
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increases in decoder performance, but substantially increased compu-
tational timeneeded to train the classifier. Because EEG andMEG signals
have different magnitudes, features were normalized to take values
between 0 to 1.

The second component of a decoding paradigm, the classifier, finds a
relationship between the feature vector inputs and the corresponding
word class (e.g., living/nonliving object category or specific word). The
generated classifiermodel allows for the prediction of theword class for
novel data. In this study, support vector machines (SVMs), as
implemented by Joachims (1999), were chosen as the classifier. SVMs
were chosen due to their robustness to high-dimensional data and
ability to generate nonlinear decision boundaries (Vapnik, 1995). Using
a set of training data from multiple classes (in our case, living and
nonliving object categories or individualwords), SVMs attempt to find a
separating boundary which maximizes the margin between these
classes (Fig. 1); this reduces over-fitting and allows for good
generalization when classifying novel data.

To estimate the accuracy of the trained classifiers, a bootstrap
cross-validation was performed. This procedure splits the data into
nonoverlapping training and testing sets in order to evaluate the
effectiveness of the classifier when encountering new data. For each
round of cross-validation, 1–30 random trials of the same type (living
or nonliving objects in the binary case, individual words in the
multiclass case) were omitted before training the SVM. The omitted
(test) trials were then individually classified using the resultingmodel
and discriminant scores averaged to generate the final classification.
One thousand rounds of bootstrap cross-validationwere performed to
obtain an estimate of classification accuracy. Only nonrepeated words
were used to train the SVM to distinguish between living and
nonliving objects, to allow for training on a large variety of unique
stimuli within each category. By necessity, repeated words were used
to train the SVM to classify individual words.

A radial-basis-function kernel, with parameter γ=0.0005, was
used in training the SVM to allow for nonlinear decision boundaries.
The c-parameter, specifying the tradeoff between misclassification of
training examples and maximal margin, was set to 1. A multiclass
version of the classifier was also trained to discriminate between the
five large (target) or five small (nontarget) words based on the
implementation in Crammer and Singer (2002). Significance thresh-
olds, at p=0.05, were computed using permutation distributions
generated by performing 1000 repetitions of the cross-validation
procedure on trials with shuffled target labels. All subsequent results
indicating statistically significant decoding accuracies utilize this
metric unless otherwise specified.

Data visualization

The final classifier generated by the SVM consists of a weight
vector which can be used to classify new trials. In the linear case, the
weight of each feature dictates the importance of that feature in the
final classification. Thus, examining the linear SVM weights allows
determination of important spatiotemporal features in the classifica-
tion of living versus nonliving objects. By plotting the SVM weight
vector on a 2-D topographic representation of the scalp (topoplot), we
can generate a map of the time-sensor points which contribute the
most to the final classifier.

In the individual word (multiclass) case, a single weight vector is
generated for each of the fivewords. Highly variable weights associated
with a particular feature indicate that the classifiermore heavily utilizes
this feature to discriminate different words. Thus, the variance of the
weights for each feature was computed as a metric of relative
importance of each time-sensor point and plotted in a topoplot. Because
the lead field of aMEG planar gradiometer is directly under the sensors,
these topoplots are a valid way of exploring the cortical areas
contributing to the discrimination (Hämäläinen and Ilmoniemi, 1994).

Confusion matrices were also generated in the individual word
(multiclass) case to compare the actual word presentedwith theword
predicted by the classifier. These matrices indicate the type and
quantity of errors generated by the multiclass SVM when decoding
individual words and allow for a systematic analysis of the words that
were most difficult to classify. Any given row of these matrices shows
the distribution of classification of a particular word with the diagonal
indicating correct classification and off-diagonals indicating errors.

Intermodality and intersubject decoding

To study supramodal representations, we trained an SVM on
features from either the auditory or visual tasks from a single subject.
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Data from the same subject, but opposing modality, was then used to
test the classifier. Because no word overlap was present between the
SV and SA versions of the task, this could only be done for the
classification of categories (animals versus nonliving objects).

Intersubject decoding was also performed to examine the
consistency of language-related representations between individuals.
In this case, an SVM was trained on data from all but one subject
within a single modality. The data from the remaining subject was
then used as test data. This was repeated by omitting each subject in
turn. This analysis was performed on both living/nonliving category
and individual words.

Hierarchical tree decoding

Although utilizing a single multiclass decoder to distinguish
individual word representations often works well, it does not directly
incorporate a priori knowledge about semantic classes and the
features which best discriminate these categories. To combine
information from the classifier models generated to decode semantic
category and individual words, we implemented a hierarchical tree
framework which attempts to decode word properties sequentially.
Given an unknown word, the tree decoder first classifies it as either a
large (target) or small (nontarget) object. The word is then classified
as living or nonliving object, and finally as an individual word within
the predicted semantic category. This allows the appropriate features
to be used to decode each word property, narrowing the search space
before individual words are decoded. Furthermore, such a tree
construct is easily scalable and could allow for the eventual decoding
of larger libraries of words.

As a proof-of-concept, a three-level hierarchical tree construct was
implemented using a set of SVMs for each level of the tree. Amplitude
(six time points from 200 to 700 ms) and spectral features (8–12 Hz
power at six time points from 200 to 700 ms) were first utilized to
decode whether an unknown word represented a large (target) or
small (nontarget) object. The spectral features allowed for motor
intent to contribute to this initial classification. In the second and third
levels of the tree, amplitude features from 200 to 700 mswere utilized
to decode living/nonliving object category, and amplitude features
from 250-500 ms were used to decode individual words. A separate
SVMwas trained (using the same parameters described in section 2.4)
for each branch of the tree using the appropriate trials. Upon
classification of a new trial, the result of earlier levels determined
which of the trained models would be utilized to decode subsequent
features. For example, if a novel trial was first decoded as a large
object (target trial), and subsequently decoded as a living object, the
final classifier would label the trial as either a “dinosaur,” “python” or
“steer”.

To compare performance to a single multiclass decoder, an SVM
was trained to discriminate between all 10 words using the full set of
amplitude and spectral features used in the hierarchical tree decoding.
A bootstrap cross-validation with 1000 repetitions was again used to
estimate the accuracy of this decoder.

Results

Behavioral results

To ensure that behavioral responses to different trial types did not
contribute to the decoding of words and semantic categories, we first
analyzed the accuracy and response times of button presses (to large
objects) for all subjects. Accuracy of behavioral responses ranged from
71.6% to 95.5% with a mean of 90.3±1.4% across subjects. Mean
response times varied from 760 to 1152 ms with a cross-subject mean
of 943±27 ms. Mean accuracies for living and nonliving object
categories across subjects were 90.4±1.6% and 90.2±1.6% respec-
tively. Mean response times for living and nonliving object categories
were 947±30 ms and 962±25 ms. Accuracies and response times
were not significantly different between living or nonliving object
trials for any of the subjects (Wilcoxon sign-rank, pN0.05). It is
therefore unlikely that differential behavioral responses influenced
subsequent decoding analyses. Accuracies were not significantly
different between SV and SA tasks (Wilcoxon, pN0.05), although
mean response times were shorter for the visual task (SV: 864 ms, SA:
1023 ms, Wilcoxon, pb0.00001). As expected, response times were
shorter for repeated versus novel words (repeated: 868 ms, novel:
1023 ms, Wilcoxon, pb0.001). Mean accuracies and times were not
significantly different between individual repeated words for any
subject (ANOVA, pN0.05).

SVMs allow for decoding of semantic category

We first attempted to train an SVM to decode living versus
nonliving objects. The SVM was trained separately on EEG features,
MEG features, and both combined. Fig. 2A-B illustrates the decode
accuracies after averaging five trials (chance accuracy=50%). When
utilizing EEG features alone, data from seven of the nine subjects in
the SV task and 6 of 9 in the SA task, showed statistically significant
decoding accuracy (permutation test, pb0.05). When utilizing MEG
features alone, data from eight of the nine subjects in SV and seven of
nine in SA showed significant decoding accuracy (permutation test,
pb0.05). Statistically significant decoding accuracy was obtained in
data from all subjects when utilizing combined EEG and MEG features
in both SV and SA tasks. When utilizing combined EEG and MEG
features, accuracies ranged from 63% to 86% (mean±SE=76±2%)
for the SV task and 62–91% (mean±SE=75±3%) for the SA task.
Training on both MEG and EEG features increased accuracies by an
average of 12% for the SV task and 10% for the SA task over using EEG
features alone and 8% (SV) and 4% (SA) over MEG features alone
(Wilcoxon sign-rank, pb0.05). Accuracies for the SV and SA task were
not statistically different in any set of features when discriminating
between living and nonliving objects (Wilcoxon, pN0.05). These results
suggest that high-dimensional machine-learning algorithms, such as
SVMs, are able to robustly extract semantic category information from
multichannel electro/magneto-physiological recordings.

To explore the effect of the number of trials averaged on decoding
accuracy, we also performed a leave-n-out cross-validation on all sets
of features with all subjects (Fig. 2 inset panels). Not surprisingly,
increasing the number of trials averaged resulted in increased decode
performance in all cases. However, averaging more than approxi-
mately seven trials resulted in only marginal additional increases in
performance.

SVMs accurately decode individual word representations

We subsequently examined SVM decoding of individual word
representations utilizing multiclass SVMs. We trained and tested
classifiers on either the five repeated nontarget (small objects) or
target words (large objects) to decode individual word representations
without the potential motor confound (chance accuracy=20%). The
requirement for a motor action (button-press when the presented
object was larger than one foot) may result in the decoding of that
volitional response, rather than word processing information per se,
when examining differences between all 10 words. The ability of the
classifier to predict the observedwordwas statistically significant for all
subjects after averaging five trials in at least one set of features
(permutation test, pb0.05) (Fig. 2C–D). Accuracies varied from 32% to
79% (mean±SE = 60±5%) using combined EEG/MEG features for the
SV task (chance accuracy is 20%). For the auditory task, accuracies varied
from 66% to 97% (mean±SE=83±4%). Training the SVM classifier on
both EEG and MEG features increased average decode performance by
18% for the SV task and 29% for the SA task over using EEG features alone
and 2% (SV) and 7% (SA) over MEG features alone (Wilcoxon, pb0.05).



Fig. 2. Decoding accuracy when distinguishing between living and nonliving objects or individual words. The bar graphs illustrate classifier accuracy for each subject when
distinguishing between living and nonliving object category (A–B) or between individual words (C–D) after averaging five trials. Inset panels illustrate mean decoding accuracy as a
function of the number of trials averaged. Blue indicates the use of EEG features, red indicates MEG features, and green indicates that both EEG and MEG features were used. In both
the main figure and insets, chance accuracy (0.5 for living/nonliving and 0.2 for individual words) is shown as the horizontal black line and accuracies above the dashed line are
statistically significant (permutation test, pb0.05). (A–B) Data from all subjects show significant decoding ability in at least one set of features. In all cases, utilizing combined EEG
and MEG features resulted in significant decode accuracies. (C–D) When utilizing both EEG and MEG features, decoding performance when distinguishing individual words is
statistically significant in all cases, and exceeds 95% accuracy in the SA task.
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The decode accuracies of the SV and SA tasks when utilizing solely EEG
features were not significantly different (Wilcoxon, pN0.05). However,
utilizingMEG alone or both feature types resulted in significantly better
performance in the SA data than utilizing the corresponding feature sets
in the SV data (Wilcoxon, pb0.01).

The SA task contained twice asmany trials as the SV task (780 for SA
versus 390 for SV) which may have resulted in the difference in
decoding accuracy between the two presentation modalities. By
utilizing only the first 390 trials of the SA task, accuracy of themulticlass
decoder after averaging five trials (mean±SE=61±4%) was not
significantly different from SV performance (mean±SE=60±5%)
(Wilcoxon, pN0.05).

Again, increasing the number of trials averaged increases decode
performance substantially (Fig. 2C–D inset panels). In the case of
individual word decoding for the SV task, there is a slight decrease in
accuracy when the number of trials averaged is increased from 6 to 8.
This is likely due to the fact that increasing the number of trials
averaged causes a corresponding decrease in the number of trials used
for training the SVM, leading to a less robust classifier. This is
especially pronounced in the multiclass SV case because of the
relatively smaller number of total trials per condition when compared
to the SA task. These data also illustrate that combining EEG and MEG
features improves accuracy over either feature set alone. Taken
together, these results demonstrate surprisingly robust ability to
decode individual words from spatiotemporal features computed
from multichannel electrophysiology.

Linear probabilistic decoders are unable to handle high-dimensional data

While a decoding analysis is a powerful method for exploring
electro/magneto-physiological data, not all classification algorithms
are suited for such an analysis. To demonstrate the advantages of

image of Fig.�2
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utilizing machine-learning techniques robust to high-dimensional
data, we compared the decoding accuracy obtained when using SVMs
(Sections 3.2 and 3.3) to the use of a popular probabilistic classifier.
Because traditional Fisher linear discriminant analysis and Bayesian
decoders are unable to handle cases inwhich the number of features is
close to, or exceeds, the number of trials, we utilized a naïve Bayes
classifier. Naïve Bayes classifiers assume independence of features,
and are thus able to train and classify this particular set of MEG/EEG
features.

When classifying living/nonliving category using MEG and EEG
features, a naive Bayes classifier resulted in average accuracies of 54±
4% and 51±3% for SV and SA, respectively (chance=50%). This was
significantly lower than the SVM classification of the same data (76%
for SV, 75% for SA, Wilcoxon sign-rank, pb0.005), and in fact not
statistically different from chance. Similarly, when classifying indi-
vidual words using MEG and EEG features, a naïve Bayes classifier
yielded accuracies of 41±4% and 46±3% for SV and SA data
respectively (chance=20%). This, again, is significantly lower than
the classification using an SVM (60% for SV, 83% for SA, pb0.005).
These results suggest that a decoding analysis of MEG/EEG data
requires techniques which are robust to high-dimensional data. In this
case, SVMs, when compared to a naive Bayes classifier, are better able
to handle such data and can provide insight into the spatiotemporal
representations of semantic knowledge.

SVM weights show bilateral distributed cortical areas contribute to
classification

Examining the SVM weights allows us to determine the features
which were most important in the generation of the final SVM
classifier (Fig. 3). In the linear case, the weight of each feature dictates
the importance of that feature in the final classification. Because the
weights of a nonlinear classifier cannot be easily visualized, we
utilized linear SVMs when examining classifier weights. The perfor-
mance when using nonlinear SVMs was greater than the performance
of the linear SVMs by 3.3% on average (Wilcoxon sign-rank, pb0.05),
however decoding accuracy remained high in the linear case. In all
cases where the nonlinear SVM yielded statistically significant
decoding accuracy, the linear SVM also yielded statistically significant
accuracy. Thus, examining the linear SVM weights allows determina-
tion of important spatiotemporal features in the classification.

Averaged weights across subjects for the visual (Fig. 3A) and
auditory (Fig. 3B) tasks show a broadly distributed pattern of
information-specific activity. Large weights are seen at all sampled
time points and across both hemispheres. In particular, bilateral
anterior temporal and inferior frontal weights increase to inanimate
objects relative to living objects from 400 to 600 ms. A concurrent
increase of SVMweights in response to living over nonliving objects is
present at left inferior temporal-occipital sensors from 400 to 700 ms.
Interestingly, an early temporal-occipital increase in weights to
nonliving objects is seen at an earlier latency of 200 ms. While left
inferior temporal–occipital activation to animals has been previously
observed, the earlier activation to nonliving objects has not been
reported.

When decoding individual word representations, the multiclass
SVM generates one set of weights for each class. For visualization
purposes, the variance of the SVM weights across words for each
time-sensor point was computed and displayed (Fig. 3C–D). Features
with higher variances differ more across classes, generally making
them more important in the final classification. These data also show
fairly distributed set of time-sensor points which contribute to the
decoding. The SV data showed inferior occipital increase in weight
variance from 300 to 400 ms, and inferior temporal activation from
400 to 500 ms (Fig. 3C). The SA task showed increased weight
variance in bilateral anterior temporal areas from 250 to 450 ms with
increases in posterior sensors at 300 and 500 ms (Fig. 3D).
Systematic errors in individual word decoding reveal semantic structure

Confusion matrices were constructed to analyze errors generated
when discriminating between all 10 repeated words (Fig. 4A). The
actual stimulus words are present along the vertical axis while the
words predicted by the classifier are present along the horizontal axis.
The colors along any given row (actual word) indicate the proportion of
trials of that word which were classified as each of the possible choices
(predicted words) (i.e., the confusion rate). Therefore, if the classifier
correctly classified theword “feather” in all cases, thefirst element in the
row corresponding to “feather” would be 1 (i.e., “feather” was always
classified as “feather”) with all other elements being 0 (i.e., “feather”
was never classified as any other word). Therefore, the diagonal
elements in the matrix display correctly classified trials.

Visual examination of confusion matrices confirms that decoding
of the MEG auditory data yields the highest accuracy, followed by EEG
auditory data, followed by data from the visual task. The confusion
matrices of combined EEG and MEG data were virtually identical to
the confusion matrices generated to MEG data alone (data not
shown). A larger confusion rate is visually apparent within target
(large object) or nontarget (small object) classes (upper left and
lower right corners), compared to between the two classes (lower left
and upper right). The required motor response associated with the
target trials may be providing additional nonlanguage information
allowing for a decreased error rate when decoding between all 10
repeated words (as discussed in Section 3.3). Despite this, the ability
to decode individual words is seen within the large and small object
groups; this provides additional evidence that word-specific infor-
mation is present in the neural signals being classified.

To quantify the effects of semantic category and large versus small
objects on confusion rates, we performed a three-way ANOVA on these
data (Fig. 4B). This was done to determine if two words which were
within the same class (e.g., both living objects, both small objects, etc.)
had a higher confusion rate than twowords in different classes. In other
words, the ANOVA compares differences in “within-class” confusion
rates to “between-class” confusion rates. The ANOVA analysis involved
three factors (living/nonliving, large/small, and subjects) with two
levels in the categorical factors (within-class or between class) and nine
levels in the subject factor (one for each subject).

For the SV task, the average large/small between-class confusion rate
(mean±s.e.=0.0472±0.027) was significantly smaller than large/
small within-class confusion (0.125±0.045; F=45.72, pb0.00001).
Average living/nonliving object between-class confusion (0.074±
0.037) was significantly smaller than living/nonliving object within-
class confusion (0.092±0.043; F=8.59, pb0.005). For the SA task, the
average large/small between-class confusion (0.038±0.028) was
significantly smaller than large/small within-class confusion (0.067±
0.036; F=20.28, pb0.00001). Average living/nonliving object between-
class confusion (0.045±0.031) was also significantly smaller than
living/nonliving object within-class confusion (0.058±0.034; F=7.99,
pb0.05). This shows that it is more difficult for the classifier to
discriminate words within the same semantic category than words of
different categories. This suggests semantically related words have
similar neural representations, and provides further evidence of the
natural distinction between living and nonliving objects.

Decoding is not based on low-level stimulus properties

It is possible that the generated classifiers are utilizingneural activity
related to low-level visual or auditory stimulus properties when
decoding individual words. For example, the classifiermay be decoding
brain activity which is specific for the number of letters in the visual
word or the number of syllables in the acoustic word, and not the
semantic information associated with the word. To test this, we
performed a shuffling based on stimulus properties to evaluate this
potential confounding factor. Within either the five target or nontarget



Fig. 3. Classifier weights show important times and locations for decoding. (A–B) SVMweights of the classifier trained on living and nonliving object categories in MEG show areas of
significant differences. Areas of dark red indicate biases in classification towards nonliving objects, and blue denotes biases towards animals and living objects. Averaged weights
across all subjects are shown at each sensor-time point for the (A) visual and (B) auditory tasks. Bilateral anterior temporal and inferior frontal differences are seen at 400–600 ms
during both the SV and SA tasks (white arrows). Left temporal-occipital differences showing larger responses to objects are apparent at 200 ms (red arrows) with differences
showing larger responses to living objects occurring at 400–700 ms in both modalities (black arrows). (C–D) Variance of SVMweights is shown at each time-sensor point indicating
relative importance of each feature in individual word discrimination. Features with larger variance indicate larger separation between the SVMweights in that particular dimension
and correlate with increased discrimination ability. (C) Extracranial weights from the SV task indicate occipital significance around 300–400 ms (black arrows) and inferior temporal
significance at several times (white arrows). (D) Weights from the SA task show bilateral anterior temporal and inferior frontal significance from 250 to 450 ms (white arrows), and
inferior occipital significance at 300 and 500 ms (black arrow). Inferior parietal significance is also seen from 350 to 400 ms (blue arrow).
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words,we randomly swappedhalf of the trials between twowordswith
equal numbers of letters or numbers of syllables, thus creating two
categories with consistent sensory characteristics but scrambled lexical
referents, while leaving the remaining three words unchanged. If the
decode ability was solely based on either of these visual or phonetic
properties of the stimulus, we would see no change in accuracy. In fact,
thedecoding accuracy of these sensory based categories droppedby 24%
(letters) and 30% (syllables) (Wilcoxon sign-rank, pb0.01). Accuracies
remained statistically above chance due to the fact that trials associated
with three of the five words were left unchanged.

Although these low-level properties were not solely responsible
for the decode ability, if these stimulus characteristics contributed
information to the decoding, shuffling trials between two words with
different sensory characteristics would result in a larger drop in
accuracy compared to shuffling between words with consistent
sensory characteristics. The drop in performance when swapping
trials between words with similar sensory characteristics was not
significantly different from the performance when swapping trials
between words with different sensory characteristics (25% for letters
and 28% for syllables, Wilcoxon, pN0.05). This suggests that these
sensory characteristics did not contribute significantly to the decoding
of individual words in the visual version of the task.

Weperformed the sameshuffling analysis for the SA task aswell. The
drop in performance was 23% when shuffling between words with the
samenumber of syllables (Wilcoxon,pb0.01). This decrease in accuracy
was not statistically different from the decrease in accuracy when
shuffling between words with different numbers of syllables (20%,
Wilcoxon, pN0.05).

image of Fig.�3


Fig. 4. Individual word decoding confusion matrices. (A) Averaged confusion matrices for decoding all 10 individual words (averaging five trials) indicate the types of errors made.
The vertical axis displays the actual stimulus word while the horizontal axis displays the word predicted by the classifier. The colors along any given row (actual word) indicate the
proportion of trials of that wordwhichwere classified as each of the possible choices (predicted words). The diagonal elements display correctly classified trials.Words are sorted into
small and large objects (divided by black lines), and living or nonliving categories (blue and red text). These matrices demonstrate a significant ability to decode individual words
without regard to large/small conditions. (B) Within and between-category confusion rates are shown for the large/small and living/nonliving object distinctions. In all cases,
confusion rates between categories are statistically lower than confusion rates within each category.
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To control for the possibility of frequency-related acoustic
properties of the words affecting the decode analysis (in the SA
task), we attempted to predict stimulus properties using the same set
of neural features used in the individual word decoding. In this case,
the SVM algorithm performed a regression instead of classification to
predict the power of the acoustic stimuli within five frequency bands
(250–500 Hz, 500 Hz–1 kHz, 1–2 kHz, 2–4 kHz, and 4–8 kHz). If any
of these acoustic properties contribute to the decoding of individual
words, we would expect that an SVM trained on the previously used
features would also be able to predict the power in these auditory
frequency bands. To statistically test these results, a permutation
distribution was computed by shuffling trials so that each trial was
associated with a random set of stimulus band-power values for 2000
trainings of the SVM regression. The root mean square error was
computed for each of these repetitions, resulting in a distribution of
errors for the case that no information about stimulus band-
power was present in the computed features. The root mean square
error of this regression was not statistically significant based on a
permutation distribution computed by shuffling the stimuli (pN0.05,
Supplementary Fig. S1). This result suggests that the decoding of
individual words was not solely a result of differential representation
of low-level properties of the auditory stimulus such as acoustic
power.
Inter-subject and intermodality decoding show shared neural
representations of semantic information

To investigate supramodal contributions to the generated classi-
fiers, SVMs were trained on one stimulus modality and tested on the
other modality. When training on visual data and testing on auditory
data, statistically significant decode accuracies was obtained in three
of nine subjects (Fig. 5A) with a mean accuracy across all subjects of
57.5±3.0%. When training on the auditory modality and testing on
the visual modality, data from five of nine subjects showed significant
decode accuracies with a mean accuracy across all subjects of 67.7±
4.1%. This suggests that the models generated with features from
either version of the task contain supramodal semantic information.
This is more apparent in the casewhere the training set was larger and
better able to produce a robust classifier (training on SA, testing
on SV). By increasing the number of trials averaged, performance
improves, as seen previously (Supplementary Fig. S2).

We also investigated the ability to train a generalized, subject-
nonspecific decoder by training an SVM on data from all but one
subject, and testing on the final subject's data. The accuracy obtained
from such a cross-validation is an indication of the consistency of
language-related representations between individuals. In the first
case, an SVM was trained to discriminate between living and
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Fig. 5. Intermodality and intersubject classification shows word and category representation consistencies. Accuracies of intermodality and intersubject decoding are shown after
averaging 10 trials. Chance accuracy is indicated by solid horizontal line and the statistically significant threshold is shown by dashed line (permutation test, pb0.05). A) Training on
living/nonliving object data from SV and testing on data from SA results in data from 3 of 9 subjects showing statistically significant decode ability while training on SA and testing on
SV results in data from five of nine subjects showing significant decode ability. This indicates supramodal semantic information is encodedwithin the classificationmodels generated
by the SVM. (B) Training an SVM on living/nonliving object data from all but one subject and testing on the final subject results in data from five of nine and nine of nine subjects
showing statistically significant decode within the SV and SAmodalities respectively. (C) Training an SVM on individual word representations from all but one subject and testing on
the final subject results in data from six of nine and nine of nine subjects showing statistically significant decode ability. This indicates intersubject consistency in the neural
representation of these words.
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nonliving object categories. Data from five of nine subjects for SV
and all subjects for SA showed statistically significant decoding
performance (Fig. 5B, pb0.05). Mean accuracies were 56.8±2.4% and
72.9±2.8% for SV and SA, respectively.

A generalized SVM was also trained to discriminate between five
large or small repeatedwords. Fig. 5C indicates that in six of nine cases
for SV and all cases for SA, the decoding accuracy was significantly
above chance levels. Mean accuracies were 30.2±3.7% for SV and
41.3±2.7% for SA (chance=20%). Despite the fact that MEG sensor
positions are variable between subjects, above-chance accuracies
were obtained, suggesting that some word-specific information is
consistent between individuals. Not surprisingly, however, subject-
specific classifiers still yield significantly higher decode accuracies.

Hierarchical tree decoding improves decoding performance

To explore the potential practical use of machine-learning
algorithms to decode larger libraries of words, we used SVM classifiers
within the larger construct of a hierarchical tree decoder (Fig. 6). Such
a paradigm is easily scalable and may allow for the eventual decoding
of a large number of individual words or concepts. Utilizing a
hierarchical tree decoding construct allows for the incorporation of
a priori knowledge about semantic classes and the features which best
discriminate these categories.
The average accuracy of all branches of the tree for the SA task was
over 80% and accuracies at each level of the decoder were above 80%
for all but two subjects (Fig. 6A–B). By examining cumulative
accuracies at each level of the tree, we find that errors propagate
from earlier levels, as expected, but accuracy ultimately remain above
60% in all cases (Fig. 6C). The mean overall accuracy of the tree
decoderwas 70%, significantly higher than the 67% accuracy of a single
multiclass SVM trained on all 10 words (Wilcoxon sign-rank, pb0.05)
(Fig. 6D). Data from all subjects, but subject 7, showed an
improvement over the single SVM classifier when using the tree
decoder. Thus, the hierarchical tree framework, by incorporating a
priori knowledge of semantic properties, allows representations of
individual word properties to be decoded more accurately than using
a single multiclass decoder which treats each word as an independent
entity.

Discussion

Understanding not only the spatial, but also the temporal
representation of semantic categories and individual words requires
analysis techniques robust to the high dimensionality of multichannel
EEG and MEG data. In this study, we have demonstrated that a
machine-learning technique, such as SVMs, can detect distributed
differences in neural activity and robustly extract language-related
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Fig. 6. Hierarchical tree decoding improves classification performance. A three-level hierarchical tree decoder was utilized to first decode the large/small distinction (utilizing
amplitude and spectral features), then the living/nonliving object category (utilizing 200–700 ms amplitude features), and finally the individual word (utilizing 250–500 ms
amplitude features). Data from decoding of the SA task are shown (data from SV task shown in Supplementary Fig. S3). (A) Average accuracies at each branch of the tree are shown
with corresponding colors. Accuracies remain above 80% for all branches. (B) Accuracies at each level of the decoder are shown on a per subject basis with dotted lines indicating
chance accuracy. (C) Cumulative accuracies at each level decrease as errors propagate through levels of the tree, but remain above 60%. (D) Performance of the hierarchical tree is a
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significant improvement (Wilcoxon sign-rank, pb0.05) over training a single multiclass SVM to discriminate between all 10 words.
information from electrophysiological recordings. These representa-
tions are supramodal and are relatively consistent between indivi-
duals. Utilization of a scalable hierarchical tree construct allows us to
decode various word properties sequentially and further improves
decode performance. These decoding techniques not only provide
insight into the neural basis of language, but also may eventually be
used as the basis of a language prosthetic device.

Decoding analyses provide insight into spatiotemporal representation of
words and categories

Previous imaging studies investigating the neural basis of living/
nonliving object representations have yielded variable results. The
most consistent findings have been activation of the posterior middle
temporal gyrus to tools and man-made objects and activation of
inferior temporo-occipital cortex to animals (Chao et al., 1999;
Damasio et al., 1996; Martin et al., 1996; Moore and Price, 1999;
Mummery et al., 1998, 1996; Perani et al., 1995, 1999). Despite this,
inconsistencies exist in the literature. While only a few studies report
entirely conflicting results, many of the brain areas identified as
showing differential activation to living or nonliving objects have only
been reported in a single study. Moreover, one other MEG study failed
to find any statistically significant differences between the perception
of natural and man-made objects (Low et al., 2003). This may be due,
in part, to experimental design, but may also be due to the statistical
mapping analysis used to analyze these neuroimaging data. These
techniques must correct for multiple comparisons and thus are most
sensitive to brain areas which demonstrate large differences in
activation between conditions. Often, multiple comparison correc-
tions are based on spatial clustering, thus biasing the results toward
contiguous arrays of activated voxels.

The SVM weights from our recordings are generally consistent
with these previous imaging results, however, several important
differences exist. The MEG data suggest that the bilateral anterior
temporal, bilateral inferior frontal, and left parietal regions contribute
to nonliving object category representation from 400 to 500 ms.
While bilateral temporal activations have been seen previously,
frontal activity sensitive to object category have been largely seen
only within the left hemisphere. Consistent with previous results, left
inferior temporal-occipital SVM weights specific for living objects are
apparent from 400 to 500 ms, but early 200 ms nonliving object-
specific weights are also present in the same area. Activation to
inanimate objects has not previously been seen in left inferior
temporal-occipital cortex via functional neuroimaging. This finding
suggests that a single brain area may respond to living and nonliving
categories at different latencies, but more focal intracranial recordings
may be necessary for further substantiating this hypothesis. Utilizing a
recording modality with sufficient time resolution, and an analysis
technique designed to handle high-dimensional data, allows for the
discrimination of such time-separated effects. In contrast, the
temporal blurring in fMRI and PET may only allow detection of the
larger or more prolonged effect. This may explain discrepancies in
previous imaging results; it is possible that the particular cognitive
demands of each experimental task may elicit varying latencies of
activity that manifest themselves differently in low time-resolution
neuroimaging data.

Furthermore, while the N400 event-related potential (ERP) is
known to modulated by various semantic effects (Holcomb and
Neville, 1990; Kutas and Hillyard, 1980, 1984), our results suggest
that earlier components (possibly as early as 200–300 ms) may also
contribute to the encoding of object category. This is especially
pronounced in left inferior temporal–occipital sensors at 200 ms
when classifying living versus nonliving objects in both visual and
auditory modalities.

The results presented here also suggest a potential structure to the
underlying representation of individual words. Because extracranial
electrodes record the activity of large networks of concurrently active
neurons, it is possible that the word-specific responses seen in our
data are the superposition of many specific neural responses to lexico-
semantic features of each word, as others have suggested (Caramazza
et al., 1990; Pulvermuller, 2005; Tyler and Moss, 2001; Tyler et al.,
2000). For example, the neural response to the word “banjo” may be
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comprised of the sum of the specific activations related to how a banjo
sounds, the visual characteristics of a banjo, the fact that “banjo” is a
noun, and all the associative elements specific to the individual. One
might expect that concepts with large amounts of overlapping
characteristics would incorporate similar neural networks and thus
would have similar macro-scale representations. The confusion
matrix analysis supports this idea by indicating that, while the
classifier was able to decode individual words, fewer errors were
made between living and nonliving objects thanwithin either of these
semantic categories. This supports the intuitive notion that the
representation of semantically related words may be more similar
than the representation of words which are distant in semantic space.
Under this hypothesis, it is not surprising that the novel trials separate
nicely into living and nonliving object categories.

Machine-learning techniques can robustly decode language information
from extracranial neurophysiology

This study also demonstrates the ability to extract semantic category
and individual word representations from spatiotemporal features
generated from noninvasive neurophysiology. The successful inter-
modal classification shows thatourmachine-learningmodels are able to
extract semantic information that is not specific to a single sensory
modality. Not surprisingly, the cross-modality decode performancewas
lower than single modality performance; this may be partially due to
differences in sensor placement and cognitive state between perfor-
mance of the SV and SA tasks, often separated by months.

Despite the variability in recording conditions, intersubject
classification also performed significantly above chance levels. This
suggests that the representations of various objects, concepts, and
semantic categories may be fairly consistent across individuals.
However, it is important to note that the generalized decoder
performs far worse than the subject-specific decoders. This may be
due to variable electrode placement, variable cortical language-
related representations, or both. This potential intersubject variability
often decreases the sensitivity of traditional statistical mapping
techniques used in imaging studies. Subject-specific decoding
analyses, like the one presented in this study, overcome this by
training and testing on a subjects own data.

A few other studies have attempted to decode word processing
information from electrophysiology (Suppes and Han, 2000; Suppes
et al., 1999, 1997). These studies utilize specifically chosen single
channels of EEG. Theminimum square error classifiers they used were
therefore appropriate for decoding these low-dimensional data. In our
case, however, feature vectors capture the entire spatiotemporal
dynamics of each trial, and thus machine-learning techniques which
are robust to high-dimensional data were necessary. We achieved
higher average accuracies after averaging five trials than these
previous studies have reported after averaging 10 trials (Suppes
et al., 1997). In another study, Gonzalez Andino et al. (2007) also
utilized SVMs to decode multichannel EEG recordings related to word
and image processing. While the reported accuracies are impressive,
the authors perform discrimination between distinct classes of stimuli
(written words, pseudowords, line drawings, and scrambled images),
rather than the more difficult task of decoding conceptual categories
within a single stimulus modality.

While language information was extracted from both EEG and
MEG recordings, MEG-based features yielded significantly higher
accuracies. This differential accuracy of MEG versus EEG may simply
be due to increased numbers of sensors in the MEG modality.
However, despite the lower performance of the EEG features,
combining EEG and MEG features improved performance over either
recording modality alone, indicating that the information provided by
EEG and MEG is not completely redundant. This suggests that neither
recording modality is strictly superior to the other, and that EEG and
MEG each provide unique information regarding neural processes.
This notion is supported by widespread evidence that MEG and EEG
are sensitive to different neurophysiological processes (Cohen and
Cuffin, 1983; Cuffin and Cohen, 1979; Dehghani et al., 2010; Huang
et al., 2007; Wolters et al., 2006).

While we have demonstrated that support vector machines are
able to extract distributed language information from EEG and MEG
recordings, not all multivariate classification techniques are equally
successful. A naive Bayes classifier performs significantly poorer than
the SVM, suggesting that analysis of EEG and MEG data requires
algorithms which are robust against overfitting, and can handle high-
dimensional data.

Potential applications of language decoding

The use of this decoding analysis not only provides insight into the
nature of distributed language processing, but has implications for the
development of a language-based neuroprosthesis. Machine learning
algorithms, such as SVMs, can be trained on a patient's own data,
making individual variability inconsequential. Furthermore, SVMs are
robust to high-dimensional data, allowing for successful decoding
broadly distributed semantic representations.

It is important to note, however, that this study is extremely
preliminary with regard to the development of a practical communi-
cation prosthesis. Various practical barriers must be overcome before a
language prosthesis is viable. The tasks used in this study are language
comprehension tasks while a language prosthesis involves language
production. However, in most models of language processing, the same
underlying semantic representations of each of word are activated in
both production and comprehension (Dell and O'Seaghdha, 1992;
Indefrey and Levelt, 2004;Martin, 2003; Pattersonet al., 2007).Wehave
demonstrated that the representations we are decoding are supramo-
dal, suggesting that semantic content is amajor source of information in
these recordings. This semantic representation is the desired decoding
target for a language prosthetic device, so utilizing these language
comprehension tasks as an initial pass in decoding analysis is not
unreasonable. Furthermore, others have reported an ability to decode
the motor commands associated with articulation, and we believe
incorporating semantic information, as seen in this study, may greatly
benefit such efforts (Guenther et al., 2009; Kellis et al., 2010).

An algorithmwhich narrows the search space of possible words by
first determining various word properties (grammatical class,
semantic category, visual attributes, etc.) before decoding individual
concepts may require much less training and have higher perfor-
mance. We have shown that this is possible with the hierarchical tree
decoder and that performance improves as a result. The hierarchical
framework presented here would allow for the decoding of a large
library of concepts given the appropriate features to sequentially
divide the search space. For example, concrete nouns and verbs
produce different patterns of synchrony in EEG recordings (Weiss and
Mueller, 2003), making coherence features a logical choice for
discriminating this grammatical distinction. Given an adequate
number of such distinctions, more realistically sized vocabularies
may be utilized. The inclusion of a probabilistic syntactic/semantic
language model, such as those used in automatic speech recognition
(Baker, 1975), may further assist in narrowing the search-space and
facilitate improved communication.

Conclusion

The decoding analyses used in this study allow for the study of
distributed, but potentially subtle, representations of semantic
information within the human cortex. These multivariate techniques
offer advantages over traditional univariate statistical mapping
analyses. We have shown that high-dimensional machine-learning
techniques, in conjunction with EEG and MEG recordings, provide
insight into both spatial and temporal aspects of language processing.
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Furthermore, the ability to decode living/nonliving category or
individual words between subjects and stimulus modality suggests
that these representations are consistent and supramodal. We have
also shown that utilizing word property information in an informed
manner to decode individual words allows for increased performance
and provides a potential framework for decoding larger libraries of
words or concepts. These results, taken together, show that multi-
variate decoding techniques are a powerful tool for exploring dis-
tributed neural processing and the extraction of language information
from electro/magneto-physiological recordings.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2010.10.073.
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