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Abstract: After recovering from the acute COVID-19 illness, a substantial proportion of people
continue experiencing post-acute sequelae of COVID-19 (PASC), also termed “long COVID”. Their
quality of life is adversely impacted by persistent cognitive dysfunction and affective distress, but
the underlying neural mechanisms are poorly understood. The present study recruited a group
of mostly young, previously healthy adults (24.4 ± 5.2 years of age) who experienced PASC for
almost 6 months following a mild acute COVID-19 illness. Confirming prior evidence, they reported
noticeable memory and attention deficits, brain fog, depression/anxiety, fatigue, and other symptoms
potentially suggestive of excitation/inhibition imbalance. Proton magnetic resonance spectroscopy
(1H-MRS) was used to examine the neurochemical aspects of cell signaling with an emphasis on
GABA levels in the occipital cortex. The PASC participants were compared to a control (CNT)
group matched in demographics, intelligence, and an array of other variables. Controlling for tissue
composition, biological sex, and alcohol intake, the PASC group had lower GABA+/water than
CNT, which correlated with depression and poor sleep quality. The mediation analysis revealed
that the impact of PASC on depression was partly mediated by lower GABA+/water, indicative of
cortical hyperexcitability as an underlying mechanism. In addition, N-acetylaspartate (NAA) tended
to be lower in the PASC group, possibly suggesting compromised neuronal integrity. Persistent
neuroinflammation may contribute to the pathogenesis of PASC-related neurocognitive dysfunction.

Keywords: magnetic resonance spectroscopy; 1H-MRS; GABA; NAA; long COVID; depression;
insomnia; anxiety; cognitive deficits; excitation/inhibition balance

1. Introduction

The COVID-19 pandemic has imposed devastating hardship worldwide, including the
tragic loss of life, unprecedented economic/financial burden, and a mental health crisis [1,2].
While the acute symptoms of COVID-19 are quite well-documented, for a notable subset of
people, health problems can linger for a long time after recovering from the acute illness.
A set of symptoms persisting at least four weeks [3–5] or two months or longer [6] after
the initial infection is colloquially known as “long COVID”. However, the symptoms,
termed post-acute sequelae of COVID-19 infection (PASC), often last much longer [6–9],
even in people with a mild acute presentation [10–12], with some sequelae persisting for
two years after infection [13]. Neurocognitive symptoms are disproportionally represented
and include cognitive dysfunction (i.e., “brain fog”, memory and attention problems),
insomnia, depression, anxiety, and chronic fatigue, among others [3–5,10,12,14–18]. Given
the significant impact of PASC on the neurofunctional status and quality of life of many
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people over a prolonged period of time, treating this multidimensional condition has
imposed a very heavy burden on our health system and other related services [15,19,20].

Belying its initial classification as a severe acute respiratory syndrome coronavirus
(SARS-CoV-2), it has become clear that the virus affects many organ systems and that it
exerts direct as well as secondary effects on the brain [19]. The virus has a strong affinity
for angiotensin-conversion enzyme 2 (ACE2) receptor, which is expressed throughout
the organism, including neurons and glial cells in multiple brain structures [20,21]. Fur-
thermore, COVID-19 impacts the brain indirectly through a number of pathways [19,22],
including immune dysregulation mediated by excessive cytokine production and inflam-
matory processes, which seem to play an important role in PASC pathogenesis. Indeed,
neuroinflammation has been one of the proposed mechanisms contributing to neural hy-
perexcitability [23–26], which is reflected in neurocognitive PASC symptoms including
depression, anxiety, insomnia, cognitive dysfunction, and others [27–35].

However, the neural underpinnings of these PASC symptoms are poorly understood.
At the core of the problem is an inadequate understanding of the basic mechanisms un-
derlying neural hyperexcitability and the scarcity of objective measures, as imaging data
are lacking. As a dynamic, interactive system [36], the brain relies on an optimal ex-
citation/inhibition (E/I) balance, which underlies local neural activity and long-range
communication in healthy cognition [37–41]. Conversely, E/I imbalance is thought to lead
to neuropsychiatric disorders [41–46]. E/I balance is governed by cell signaling, which
has both neuroelectric and neurochemical aspects and can be examined with complemen-
tary measures. For instance, EEG signals reflect postsynaptic currents directly and in real
time [47]. In contrast, proton magnetic resonance spectroscopy (1H-MRS) can provide
insights into the neurochemical environment by quantifying the concentration of brain
metabolites in vivo [48–53].

As the principal inhibitory neurotransmitter, GABA plays an essential role in mod-
ulating neurotransmission in the brain by ensuring a stable neural network organization
and the optimal E/I balance important for the regulation of behavioral and cognitive
functions [38,54–59]. At the same time, E/I imbalance associated with GABA dysfunction
is thought to underlie a number of neuropsychiatric disorders [41,44,46,60,61]. Reliable
detection of GABA in the neural tissue is impeded by its low concentration and its spectral
overlap with the resonances of metabolites with stronger signals [52]. However, GABA
levels can be measured with dedicated spectral editing methods such as Mescher–Garwood
Point Resolved Spectroscopy (MEGA-PRESS) [62]. Based on J-coupling, this method
quantifies GABA+ and acknowledges the contributions of co-edited macromolecules with
resonances that overlap with the GABA signal [53,63]. As demonstrated in our recent
study [64], GABA+ is commonly expressed relative to a water reference (GABA+/w) to
avoid issues with creatine instability [65].

1H-MRS evidence on PASC is limited to two studies that compared PASC and control
groups. The only available study that measured GABA+ used a Hadamard Encoding
and Reconstruction of Mega-Edited Spectroscopy (HERMES) editing method to measure
GABA+ levels in the frontal lobe as a function of PASC symptoms persisting for ~7 months
on average [66]. GABA+ levels did not differ between the PASC and control groups, which
comprised middle-aged individuals reporting a number of comorbid conditions prior to
COVID-19. Clearly, additional evidence is needed, especially given that lower GABA+
levels have been reported in depression [67–71], which is highly prevalent in PASC, and
given that neuroinflammation downregulates GABAergic function [72]. Furthermore, it
has been shown that GABA agonists exert anti-inflammatory influence by reducing the
severity of COVID-19 in a mouse model [73]. Increased neural hyperexcitability is a possible
interpretation of another 1H-MRS study that reported higher Glx levels in people with
PASC [74], with Glx representing pooled resonances arising from glutamate (Glu) and
glutamine (Gln) [75].
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Another metabolite with relevance to PASC is N-acetylaspartate (NAA) which, com-
bined with small contributions from N-acetyl-aspartyl-glutamate (NAAG), shows the
largest 1H spectrum peak with a resonance at 2.02 ppm [52,76,77]. NAA is synthesized in
the neuronal mitochondria and is involved in metabolic processes supporting cell signal-
ing [78]. Based on its sensitivity to neuronal dysfunction, NAA has been used as a marker
of neuronal integrity, viability, density, and metabolic homeostasis [78,79]. Indeed, re-
duced NAA has been reliably reported for traumatic brain injury [80], depression [70,81,82],
neuroinflammation [83], and a range of brain-based disorders [84].

Given the exceedingly scant imaging evidence, the present study used 1H-MRS to
examine the impact of PASC on GABA levels and the neurochemical profile in general
and behavioral self-reports and assessments in previously healthy adults who reported
experiencing PASC for almost 6 months on average.

2. Materials and Methods
2.1. Participants

Eighteen mostly young adults (24.4 ± 5.2 years of age, 11 women) with PASC symp-
toms were recruited from the local community. They reported experiencing PASC (i.e.,
long COVID) symptoms for two months or longer, which conforms to the World Health
Organization definition [6] and exceeds the four-week minimum duration proposed by the
Centers for Disease Control and Prevention [3] and the National Institutes of Health [4].
All participants were in good health prior to contracting a mild acute COVID-19 illness
confirmed by a positive test 25.39 ± 17.22 weeks before the scan. None of the participants
required hospitalization during acute illness, nor as they continued experiencing PASC
symptoms. All participants were right-handed and reported no history of concussions,
seizures, neurological or psychiatric disorders, hearing or vision problems, regular tobacco
or marijuana use or use within the past month, and no regular use of illicit drugs or use
within the previous two months. Two PASC participants reported using Prozac (fluoxetine,
a selective serotonin reuptake inhibitor) and Vyvanse (lisdexamfetamine), respectively.
They omitted their medication at least 24 h before the scan. As described in greater detail
below, these medications did not appear to affect the results even though they upregulate
GABA function, against the hypothesized GABA reduction [70,85,86].

While experiencing the PASC symptoms, participants reported negligible functional
limitations in their daily duties and activities, 0.83 ± 1.34, on the Post-COVID-19 Functional
Status Scale ranging from 0 (no functional limitations) to 4 (severe functional limitation) [87].
Similarly, on a Likert scale from 0 (not at all) to 4 (very much), they reported that PASC
“somewhat” impacted their daily life, 1.7 ± 1.2. Figure 1 illustrates PASC symptoms in
terms of their perceived increase since recovering from COVID-19, ranging from 0 (not at
all) to 4 (very much). The most noticeable deterioration was reflected in memory deficits,
brain fog, attention deficits, depression/anxiety, fatigue, etc., which is broadly consistent
with previously reported evidence [9,14,34,88–90]. Based on Patient-Reported Outcomes
Measurement Information System (PROMIS) scales [91], our PASC cohort reported greater
depression and anxiety compared to the general population norms (Figure 2), confirming
extensive similar evidence [12,16,33,88–90,92]. Furthermore, they had lower scores on
the Multidimensional Inventory of Subjective Cognitive Impairment (MISCI) [93] than
the population norms, which is indicative of greater cognitive deficits. This finding is
aligned with numerous reports of cognitive dysfunction associated with PASC [89,90,94,95].
Overall, this pattern of deficits is consistent with lingering cognitive complaints colloquially
termed “brain fog”, referring to long-term neurologic sequelae known as neuro-PASC [32].

The study’s procedures were approved by the San Diego State University Institutional
Review Board. All participants provided written informed consent to participate in this
protocol and received monetary compensation for their involvement.
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Figure 1. Histograms depict average increase in symptom severity on a scale from 0 (not at all) to 4 
(very much) since recovering from the acute COVID-19 illness (means ± standard errors). 

 
Figure 2. PROMIS (Patient-Reported Outcomes Measurement Information System) [91] comprises 
a set of short-form scales used to assess seven health domains in PASC (post-acute sequelae of 
COVID-19) participants. The scores were standardized with a T-score metric based on a normative 
sample with a mean of 50 (marked with a dotted line) and standard deviation of 10 [96]. PASC 
participants reported higher anxiety and depression on the two PROMIS scales. The PASC group 
also reported greater subjective cognitive impairment, as reflected in lower scores on MISCI (Multi-
dimensional Inventory of Subjective Cognitive Impairment) [93], here shown after conversion to 
PROMIS-compatible T-scores. * p < 0.05, ** p < 0.01, *** p < 0.001. 

The control group (CNT) comprised twenty participants (23.3 ± 3.7 years of age, 14 
women) who had no medical concerns at the time of the study and reported no history of 
concussions, seizures, neuropsychiatric disorders, or hearing or vision problems. They 
were recruited from the same community as the PASC group, but they did not experience 
COVID-19. Half of the CNT sample was scanned before the lockdown. The CNT and 
PASC groups were matched on demographic variables (Table 1) and did not differ on in-
telligence, impulsivity, sensation seeking, stress, depression, or generalized anxiety. How-
ever, the PASC group reported worse sleep quality, which aligns with previous reports 
[34,97–99]. They also reported higher weekly drinking levels, which is consistent with 

Figure 1. Histograms depict average increase in symptom severity on a scale from 0 (not at all) to 4
(very much) since recovering from the acute COVID-19 illness (means ± standard errors).
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Figure 2. PROMIS (Patient-Reported Outcomes Measurement Information System) [91] comprises
a set of short-form scales used to assess seven health domains in PASC (post-acute sequelae of
COVID-19) participants. The scores were standardized with a T-score metric based on a normative
sample with a mean of 50 (marked with a dotted line) and standard deviation of 10 [96]. PASC
participants reported higher anxiety and depression on the two PROMIS scales. The PASC group
also reported greater subjective cognitive impairment, as reflected in lower scores on MISCI (Mul-
tidimensional Inventory of Subjective Cognitive Impairment) [93], here shown after conversion to
PROMIS-compatible T-scores. * p < 0.05, ** p < 0.01, *** p < 0.001.

The control group (CNT) comprised twenty participants (23.3 ± 3.7 years of age,
14 women) who had no medical concerns at the time of the study and reported no history
of concussions, seizures, neuropsychiatric disorders, or hearing or vision problems. They
were recruited from the same community as the PASC group, but they did not experience
COVID-19. Half of the CNT sample was scanned before the lockdown. The CNT and PASC
groups were matched on demographic variables (Table 1) and did not differ on intelligence,
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impulsivity, sensation seeking, stress, depression, or generalized anxiety. However, the
PASC group reported worse sleep quality, which aligns with previous reports [34,97–99].
They also reported higher weekly drinking levels, which is consistent with increased
prevalence of daily drinking in this age group during the pandemic and its common use as
a coping mechanism [100,101].

Table 1. Participant characteristics for PASC and CNT groups.

PASC (n = 18) CNT (n = 20) F(1,36)/χ2 p

% Women 61% 60% 0.01 a 0.944

% White/Non-Hispanic 83% 50% 5.38 a 0.146

Age 24.44 ± 5.25 23.35 ± 3.66 0.57 0.457

Intelligence (WASI) 109.00 ± 12.50 111.30 ± 9.03 0.87 0.359

Stress (PSS) 19.56 ± 4.57 18.80 ± 4.77 0.25 0.622

Sleep Quality Total (PSQI) 9.22 ± 3.52 5.70 ± 2.39 13.25 <0.001

Impulsivity (ABIS)

Attention 1.73 ± 0.30 1.76 ± 0.41 0.06 0.813

Motor 1.77 ± 0.37 1.60 ± 0.41 1.36 0.253

Non-Planning 1.97 ± 0.48 1.80 ± 0.57 0.72 0.404

Sensation Seeking (BSSS)

Experience 7.38 ± 1.28 7.65 ± 1.84 0.19 0.667

Boredom 6.09 ± 1.30 6.35 ± 1.84 0.17 0.683

Thrill 6.74 ± 1.87 6.30 ± 2.11 0.34 0.567

Disinhibition 5.60 ± 1.85 5.55 ± 1.79 0.01 0.942

Anxiety (GAD-7) 4.50 ± 3.13 3.28 ± 3.01 1.43 0.240

Depression (PHQ-9) 4.33 ± 3.45 2.80 ± 2.89 2.22 0.145

Avg Drinks/Week 4.45 ± 4.87 1.69 ± 1.46 5.88 0.020

Memory (TYM-MCI) 9.60 ± 3.02
Group means ± standard deviations were calculated for all continuous variables. Group differences were analyzed
with one-way ANOVAs. Categorical variables (sex and ethnicity) are presented as percentages. Group differences
that were evaluated with the X2 test are marked with a. Statistically significant p-values are marked in bold. WASI:
Weschler Abbreviated Scale of Intelligence, PSS: Perceived Stress Scale, PSQI: Pittsburgh Sleep Quality Index, ABIS:
Abbreviated Impulsiveness Scale, BSSS: Brief Sensation Seeking Scale, GAD-7: Generalized Anxiety Disorder,
PHQ-9: Patient Health Questionnaire (depression), TYM-MCI: Test Your Memory for Mild Cognitive Impairment.

2.2. Procedure

PASC participants were recruited from the local community through approved postings
and ads. Upon expressing their interest in the study, prospective participants completed a
screening questionnaire and were interviewed by a staff member. They were queried about the
details of their acute illness, including its onset, symptom characteristics, duration, possible
hospitalization, and positive confirmation with COVID-19 tests; the quality and duration of
their PASC symptoms; the severity of PASC-related functional limitations in terms of daily
activities [87]; the overall impact of PASC on their quality of life; and other comorbidities.
Prospective participants were excluded if they were hospitalized during the acute COVID-19
illness to avoid confounding neurocognitive deficits with hospitalization-induced sequelae.
They were excluded if they reported a history of head injury leading to loss of consciousness
longer than 5 min, a neurological or psychiatric disorder, chronic health conditions preceding
COVID-19 that were still ongoing, using illegal substances regularly or having used them
in the previous two months, or smoking tobacco or marijuana regularly or in the previous
month. Only the otherwise-eligible participants who reported PASC symptoms persisting for
two months or longer were enrolled in the study.
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Eligible participants completed a battery of assessments hosted by Qualtrics software,
v 06/23 [102]. They were asked to rate the change in severity of the following symptoms
since recovering from the acute illness (Figure 1): memory deficits, brain fog, attention
deficits, depression/anxiety, fatigue, loss of smell, insomnia, shortness of breath, headaches,
dizziness, chest pain, other pain, blurred vision, tinnitus, numbness/tingling, and seizures,
modeled after previous studies [9,14–16,34,88–90]. They completed the PROMIS (Patient-
Reported Outcomes Measurement Information System) [91], which measures self-reported
pain interference, fatigue, physical functioning, depressive symptoms, anxiety, sleep dis-
turbances, and ability to take part in social activities (Figure 2). The normalized T-scores
were compared to the standard T-scores obtained from a normative sample (U.S. general
population) with a mean of 50 and standard deviation of 10 [96]. Participants rated their
cognitive dysfunction with MISCI (Multidimensional Inventory of Subjective Cognitive
Impairment) [93] (Figure 2), and their verbal recall was tested with the TYM-MCI (Test
Your Memory for Mild Cognitive Impairment) [103].

The cognitive abilities of all participants were assessed with the Full-Scale Intelligence
Quotient two-subject form (FSIQ-2) of the Wechsler Abbreviated Scale of Intelligence
(WASI-II) [104] (Table 1). All participants completed a battery of questionnaires evaluating
perceived levels of stress (the Perceived Stress Scale, PSS) [105], sleep quality (the Pittsburgh
Sleep Quality Index PSQI) [106], impulsive qualities linked with attention, motor, and non-
planning characteristics (the Abbreviated Impulsiveness Scale, ABIS) [107], propensity for
risk-taking and sensation-seeking behaviors (the Brief Sensation Seeking Scale, BSSS) [108],
anxiety (the Generalized Anxiety Disorder 7-item scale, GAD-7) [109], and depressive
symptoms (the Patient Health Questionnaire 9-item scale, PHQ-9) [110]. They provided
information about their weekly alcohol intake for the past six months. Average scores and
group comparisons for all these measures are presented in Table 1.

2.3. 1H-MRS and Structural MRI Acquisition

All scans were conducted at the San Diego State University (SDSU) Imaging Center
with a 3T Siemens Prisma scanner equipped with a 32-channel head coil. A brief localizer
image was initially acquired for each participant to assess the scan quality. Subsequently,
high-resolution structural images were obtained with a T1-weighted three-dimensional
Magnetization-Prepared Rapid-acquisition Gradient Echo (MPRAGE) sequence with the
following parameters: TR = 7.2 ms, TE = 3.01 ms, flip angle = 9◦, T1 = 900 ms, inversion
repeat time = 2300 ms, bandwidth = 320 Hz/pix, FOV = 256 mm, matrix = 256 × 256,
176 axial slices, GRAPPA = 2, isotropic resolution of 1 mm.

1H-MRS spectra were acquired from a voxel located in the occipital lobe. Voxel
placement was guided by each participant’s structural scan, with the voxel centered on
the median and aligned with the tentorium in the sagittal plane (Figure 3a). Adjustments
were made in the axial and coronal planes to ensure that the voxel volume did not include
the skull. GABA-edited 1H-MRS data were obtained using the Siemens MEGA-PRESS
sequence [62,111] from a 30 × 35 × 25 mm (26.3 mL) single voxel of interest (VOI) with the
following parameters: TR = 1500 ms, TE = 68 ms, bandwidth = 1670 Hz, 1024 datapoints.
A total of 256 averages was collected, including 128 ON and 128 OFF transients, 90◦

excitation/180◦ refocusing pulses. The number of acquired signal averages is well within
a high SNR range [112]. The bandwidth (full-width half-maximum) of the Gaussian-
shaped editing pulses was set to 80 Hz, and the pulses were applied at 1.9 ppm (‘ON’) and
7.5 ppm (‘OFF’) for 128 trials each, with their difference resulting in a J-edited spectrum. The
difference signal at 3.0 ppm from the ON/OFF acquisitions contains co-edited contributions
from homocarnosine and macromolecules, referred to as GABA+ [53]. Water suppression
was accomplished with the Siemens VAPOR full water suppress option. Participants were
instructed to close their eyes before the scan began.

One additional participant was scanned, but their GABA+/water value fell 6.6 stan-
dard deviations below the group mean, so this data set was excluded from the analysis.
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Figure 3. Example of (a) voxel placement in the occipital lobe centered on the median and aligned
with the tentorium in the sagittal plane; (b) segmentation of gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) for a single participant.

2.4. 1H-MRS Modeling and Analysis, and VOI Tissue Segmentation

Modeling and quantification of the 1H-MRS data were accomplished with the MATLAB-
based (Mathworks, Natick, MA, USA) toolkit Gannet 3.1.3 [113]. For each participant, the
following processing steps were applied: spectral registration, frequency and phase correc-
tion, 3 Hz exponential line broadening, and rejection of outlier points. ON and OFF spectra
were subtracted to generate the edited difference spectrum. Alignment of ON and OFF
spectra was accomplished using the total-choline (tCho) peak as a reference signal. A single
Gaussian model was used to fit the edited GABA+ signal relative to water (GABA+/w).
Fit errors were calculated by dividing the standard deviations of fitting residuals by the
fitted GABA+ peak amplitudes. All participants included in the statistical analysis had
GABA+/w fit errors ≤ 12% [114,115], with average fit errors equaling 7.2% ± 1.7%. Figure 4
illustrates an example of unedited spectra, the fitted model, and the water reference signal.
Two PASC participants reported using Prozac (fluoxetine, a selective serotonin reuptake
inhibitor) and Vyvanse (lisdexamfetamine), respectively, but they omitted their medication
at least 24 h before the scan. Nonetheless, both of these medications tend to increase GABA
levels [85,86,116], which runs counter to the hypothesized GABA decrease, so we checked
the two participants’ GABA+/w values. The z-scores were negligibly above the PASC
group mean at 0.01 and 0.10, respectively. NAA (N-acetylaspartate) values were determined
by calculating the full width at half maximum of the peak at 2 ppm for each participant.

Since tissue composition can influence the spectral quantification, yielding higher
GABA+ levels in gray than white matter [117], each participant’s VOI was co-registered
to their anatomical scan to ascertain the percentage of gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) within the volume (Figure 3b). The reported GABA+
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concentration values were corrected for CSF-fraction and tissue-dependent relaxation, as
recommended by prior publications [118,119]. The average GM, WM, and CSF proportions
as well as group comparisons are presented in Table 2. These tissue-dependent segmenta-
tion values were used to calculate the GM ratio for each participant based on the following
formula: GM/(GM+WM). The GM ratio was applied as a covariate in all analyses of
1H-MRS data [117].
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Table 2. Tissue segmentation.

VOI PASC (n = 18) CNT (n = 20) F(1,36) p

GM 0.63 ± 0.05 0.62 ± 0.03 0.69 0.413

WM 0.29 ± 0.03 0.29 ± 0.03 0.84 0.366

CSF 0.09 ± 0.03 0.09 ± 0.02 0.10 0.760
Group means ± standard deviations for tissue segmentation values for gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) in the occipital voxel for the PASC and CNT groups.

2.5. Statistical Analysis

Differences in metabolite concentrations between the PASC and CNT groups were
tested with one-way ANCOVAs [120] controlling for tissue composition (GM ratio) and
biological sex. While alcohol intake did not correlate with GABA+/w (r = 0.21, p = 0.20),
weight-adjusted drinking levels were used as an additional covariate [64]. Associations
between 1H-MRS metabolites and self-reported measures were evaluated with Pearson’s
correlation coefficients. As a special case of structural equation modeling [121,122], media-
tion analysis was performed to estimate the degree to which a difference in metabolites
accounts for (i.e., mediates) the impact of PASC on depression, as measured with the
PROMIS scale [91]. The analysis used the PROCESS macro in SPSS and it controlled for all
three covariates. Indirect effects were tested with bias-corrected bootstrapping (N = 5000)
and 95% confidence intervals for all indices. As shown in the Section 3, mediation analy-
sis estimates the relations between the independent (group) variable and GABA+/w (a),
GABA+/w and depression (b), and PASC and depression (c’). The portion of the total
effect accounted for by the GABA+/w difference is represented by the product of a and b,
whereas the total effect is expressed as ab + c’.

3. Results

Controlling for tissue composition, alcohol intake, and biological sex, the PASC group
exhibited lower GABA+/w than CNT, F(1,33) = 6.15, p = 0.018 (Figure 5). Lower GABA+/w
was strongly associated with poor sleep quality, as reflected in the occasional use of sleep-
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aid medications, as a subscale of the PSQI (r = −0.82, p = 0.007). Lower GABA+/w was
also associated with higher depression, as measured with PROMIS, within the PASC
group (r = −0.66, p = 0.005), but not within the CNT group (r = 0.15, p = 0.53) (Figure 6b).
Including all three covariates, the mediation analysis found that the total impact of PASC
on depression resulted in a 4.68 increase in PROMIS t-scores p = 0.026, 95% C.I. = [0.60 8.76]
relative to the CNT group. Importantly, mediation analysis provides an insight into the
indirect effect mediated by GABA+/w as a hypothesized underlying mechanism. The
results show that GABA+/w concentration accounted for about 43% of the total effect,
ab = 2.01, p = 0.089, 95% C.I. = [−0.31 4.33], Figure 6a. All parameter estimates, p-values,
and confidence intervals are presented in Table 3.
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on the x-axis. PROMIS: Patient-Reported Outcomes Measurement Information System [91].
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Table 3. Mediation parameter estimates.

Parameter Est. p 95% C.I.

a −0.51 0.017 [−0.92 −0.10]

b −3.94 0.023 [−7.31 −0.58]

c’ 2.67 0.202 [−1.51 6.85]

ab 2.01 0.089 [−0.31 4.33]

ab + c’ 4.68 0.026 [0.60 8.76]

The NAA concentration tended to be lower for the PASC group compared to CNT,
F(1,33) = 2.36, p = 0.134, with all three covariates included in the model (Figure 5). Within the
PASC group, NAA correlated negatively with verbal recall, r = −0.53, p = 0.042, tested with
the TYM-MCI (Test Your Memory for Mild Cognitive Impairment) [103]. The concentration
of Glx/w did not differ between the PASC and CNT groups, F(1,33) = 1.07, p = 0.309, while
controlling for all three covariates.

4. Discussion

The PASC syndrome is a health condition marked by a range of sequelae that linger
for months or even years after recovery from COVID-19 [3–6,123,124]. Colloquially termed
“long haulers”, people with PASC report a lower quality of life, commonly reflected in
neurocognitive deficits, depression, anxiety, fatigue, and insomnia, among other symp-
toms [5,14–16,92,99,125]. Despite a clear need for better understanding of the neural
underpinnings of the long-term impact of PASC on these domains, neuroimaging evidence
is scant. The present study used 1H-MRS to examine the neurochemical profile of the
brain tissue in the occipital lobe almost six months after the acute illness in previously
healthy adults with PASC in comparison to control participants. The principal results can
be summarized as follows: (a) The participants with PASC reported a relative increase
in neurocognitive deficits, depression/anxiety, fatigue, and other symptoms (Figure 1),
confirming extensive prior evidence. (b) In comparison to the normative scores, the PASC
group showed greater cognitive impairment on MISCI [93] and higher levels of anxiety
and depression, as assessed by PROMIS [91] (Figure 2). (c) When compared to the locally-
recruited CNT group, the PASC participants were matched on demographics, intelligence,
and an array of other variables. However, they reported lower sleep quality on PSQI [106]
and a higher weekly intake of alcohol (Table 1). (d) Controlling for tissue composition,
alcohol intake, and biological sex, the PASC group had lower GABA+/w than CNT in
the occipital voxel. (e) Lower GABA+/w levels were associated with poor sleep quality
and depression, consistent with the underlying hyperexcitability. (f) Including all three
covariates, mediation analysis indicated that the impact of PASC on depression is partly
mediated by GABA+/w, suggesting its role as a contributing mechanism. (g) The PASC
group tended to have lower NAA levels than CNT.

Participants in this study were mostly young adults who were in good health prior to
contracting COVID-19. They recovered from rather mild symptoms and did not require
hospitalization. The participants did not experience significant functional limitations in
terms of performing their daily duties and activities, as assessed by the Post-COVID-19
Functional Status Scale [87]. However, their overall quality of daily life was moderately
impacted by PASC (1.7 ± 1.2 on a scale from 0 to 4). When asked to compare their current
level of functioning since recovering from acute COVID-19 on multiple dimensions, the
participants with PASC indicated that they experienced the most deterioration in the
neurocognitive domain, including greater memory deficits, brain fog, and attention deficits
(Figure 1). In addition, they reported higher levels of depression and anxiety, fatigue, loss of
smell, insomnia, shortness of breath, headaches, and some other symptoms at lower levels
of relative change intensity. None experienced any seizures (Figure 1). Even though our
participants reported rather mild PASC symptoms, this profile of relative impairments is
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consistent with numerous other reports accentuating the importance of the neurocognitive
domain, depression/anxiety, fatigue, and insomnia in the overall impact of PASC on the
quality of life [9,10,12,14–18,92,99,126,127].

In alignment with a comprehensive body of evidence on PASC-related cognitive
deficits, PASC participants scored lower than the normative sample on MISCI (Multidi-
mensional Inventory of Subjective Cognitive Impairment) [93] (Figure 2). Furthermore,
their scores for anxiety and depression were higher than in the general population on
these PROMIS scales (Patient-Reported Outcomes Measurement Information System) [91]
(Figure 2). The PASC group was additionally compared to the control group drawn from
the same community and matched on demographic characteristics. As shown in Table 1,
the two groups did not differ on general intelligence (WASI-II) [104], stress [105], im-
pulsivity [107], sensation seeking [108], or on brief screening measures of generalized
anxiety [109] or depression [110]. However, the PASC participants reported lower sleep
quality and more sleep disturbances than the CNT group, as assessed by the Pittsburgh
Sleep Quality Index [106]. Reduced sleep quality that persists for months post-infection
is one of the principal symptoms associated with PASC, as reported in numerous stud-
ies [3,12,34,89,92,97–99,126,127]. Insomnia is linked with neural excitability, which increases
progressively with the length of waketime in healthy individuals, as shown in studies
using electroencephalography (EEG) in combination with transcranial magnetic stimulation
(TMS) [128]. Furthermore, TMS studies have confirmed cortical hyperexcitability in people
with chronic sleep disturbances [129]. This aligns with 1H-MRS reports of lower GABA
levels in the occipital cortex and other brain areas in non-medicated people diagnosed
with insomnia [130,131]. Indeed, GABA agonists are by far the most commonly prescribed
medications for insomnia, since they tip the E/I balance towards inhibition and exert
sedative effects, resulting in better sleep [132].

Similarly, depression has been reliably associated with lower GABA levels, as demon-
strated using an array of methods including 1H-MRS [67,68,70]. Large meta-analyses
comparing GABA+ levels across different psychiatric disorders have confirmed that corti-
cal GABA+ is reduced reliably in depressive disorders [61,133]. This evidence has led to
the GABAergic deficit hypothesis, proposing that impaired GABAergic neurotransmission
underlies the etiology and emergence of depression [134]. This is supported by accumu-
lating evidence from human studies and animal models reporting an E/I imbalance in
favor of excitation in depressive disorders, in the context of stress and other moderating
factors [135,136]. Conversely, GABA levels increased in the occipital cortex after a two-
month-long course of treatment with SSRIs, with particularly notable gains observed in the
patients with the lowest GABA levels before treatment [137] and after a course of electro-
convulsive therapy [138]. However, cognitive-behavioral therapy did not change levels of
GABA+ in the occipital cortex [139], which suggests mechanistic effects of these therapy ap-
proaches on the excitation/inhibition balance, as well as the need for patient classification
with respect to the sensitivity to treatment based on the relative E/I balance [140].

In the present study, the PASC group had lower GABA+/w than CNT, controlling
for tissue composition, alcohol intake, and biological sex (Figure 5). Lower GABA+/w
concentration was associated with higher levels of sleep disturbances (r = −0.82, p = 0.007)
and depression (r = −0.73, p = 0.025). Representative of the core symptoms of PASC,
insomnia and depression were correlated in the present study, r = 0.40, p = 0.01, which
is consistent with previous reports [141,142]. The association of lower GABA+/w with
increased insomnia and depression is indicative of the underlying neural hyperexcitability.
This interpretation is further strengthened by the preliminary results of the mediation anal-
ysis indicating that GABA+/w partly mediates the impact of PASC on depression (Figure 6,
Table 3). More specifically, as a special case of structural equation modeling, mediation anal-
ysis [121,122] indicated that more than 36% of the total impact of PASC on depression could
be accounted for by the mediating effect of lower GABA+/w. Though preliminary and in
need of replication, this finding is consistent with PASC-related cortical hyperexcitability as
an underlying mechanism contributing to depression. Inflammatory activity and immune
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signaling have been strongly implicated as the underlying mechanisms mediating the risk
and emergence of depression [27,35,143,144]. Increased brain inflammation reflected in
gliosis is associated with PASC and is particularly prevalent in people with depressive
symptoms and/or neurocognitive deficits [33]. Indirect support is additionally provided
by the meta-analytical evidence of beneficial effects of SSRI antidepressants on the course
of COVID-19 [145] through their anti-inflammatory impact on downregulating cytokine
production [146].

Indeed, complex interactions between neurotransmission and neuroimmune signaling
regulate synaptic plasticity and underlie neural function [147,148]. Thus, neuroinflam-
mation has been proposed as an important aspect of the pathogenesis of PASC-related
neurocognitive dysfunction [23–26,28–35]. Neuroimmune regulatory mechanisms comprise
a cascade of processes affecting glutamate and GABA, the two principal neurotransmit-
ters. Increased release and extrasynaptic “spillover” of the excitatory glutamate, along
with downregulation of inhibitory GABA, results in neural hyperexcitability [23,149,150].
Neuroinflammatory factors are closely associated with the development of epilepsy [26].
Furthermore, prolonged inflammation has pro-excitatory effects on synaptic activity [24],
consistent with the post-illness profile for coronaviruses [28,92] and other conditions elicit-
ing cytokine-mediated response [27]. This results in excessive cortical excitability in people
with PASC [25,151,152]. Taken together, these findings confirm that GABA is essential for
coordinating and fine-tuning neurotransmission by stabilizing neural networks and the
optimal E/I balance [38,54–59].

In the present study, NAA concentration tended to be lower in the PASC group,
controlling for tissue composition, alcohol intake, and biological sex (Figure 5). Previous
evidence is limited to only one case–control study, which reported no reliable differences
between very small samples of PASC and control participants [74]. However, relatively
lower NAA was observed in a single patient with PASC, whose NAA levels improved after
three months of memory exercises without medical treatment [153]. Similarly, relatively
lower NAA levels were observed in two out of three consecutive patients hospitalized with
acute COVID-19 disease [154]. Given that NAA has been used as a marker of compromised
neuronal integrity [78,79], lower NAA levels observed in people with PASC may be indica-
tive of neuronal injury or dysfunction. Initially, these changes emerge as a result of the viral
infection and are subsequently followed by persisting PASC-related neuroinflammatory
processes [155,156]. This is consistent with extensive evidence of reduced NAA levels in
people living with HIV, even those with only mild HIV-associated neurocognitive symp-
toms [83], as well as other viral infections of the nervous system [157]. Furthermore, NAA
has been proposed as a biomarker of neuronal recovery since it is sensitive to treatment-
reduced reversal. For instance, NAA levels increased after a pharmacological treatment of
HIV [158]. Similarly, lower NAA levels have been observed reliably in people diagnosed
with depression [70,81,82], which were normalized by SSRI treatment [159,160]. In the
present study, the NAA levels were inversely associated with the PASC group scores on
a brief test of recent verbal memory [103], which is broadly consistent with reports of
moderate correlations with cognitive ability [161].

Even though the present study has notable strengths, especially in the context of
exceedingly scant evidence on neurochemical alterations associated with PASC, the results
should be considered in light of some limitations. The sample size is rather small, which
limits the generalizability of the findings, which should be replicated in future research
employing larger cohorts. Relatedly, while we controlled for the biological sex variable
in our analysis, large-scale studies are needed to clarify potential sex-based interactions
with clinical symptom profiles. As is commonly done in 1H-MRS studies, the voxel was
placed in the occipital cortex to examine the concentration of GABA as an index of cortical
neurotransmission in a low-level sensory processing area. However, future studies should
investigate possible regional variation in GABA levels.
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5. Conclusions

Reduced GABA-mediated inhibitory function is indicative of cortical hyperexcitability,
contributing to depression, insomnia, and other PASC symptoms. In addition, marginally
lower NAA is suggestive of compromised neuronal integrity. While preliminary, these
findings are consistent with persistent neuroinflammation as an important aspect of the
pathogenesis of PASC-related neurocognitive deficits and affective distress.
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